Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers
نویسندگان
چکیده
منابع مشابه
Toward Single-particle Bioimaging Using X-ray Free-electron Lasers
In this paper we review the recent progress toward single-particle imaging of biological molecules at x-ray free-electron laser (XFEL) facilities. We describe the progression from biological imaging at synchrotrons to imaging at XFELs, discuss recent successes, and point out specific challenges associated with imaging at XFEL facilities.
متن کاملSimple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers
A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 μm particles can...
متن کاملX-ray free-electron lasers
In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a p...
متن کاملSingle-shot spectrometry for x-ray free-electron lasers.
An experimental scheme to realize single-shot spectrometry for the diagnostics of x-ray free-electron lasers (XFELs) is presented. The combination of an ultraprecisely figured mirror and a perfect crystal form a simple, high-precision spectrometer that can cover an energy range from a few eV to a hundred eV with high resolution. The application of the spectrometer to determine XFEL pulse widths...
متن کاملPost-sample aperture for low background diffraction experiments at X-ray free-electron lasers
The success of diffraction experiments from weakly scattering samples strongly depends on achieving an optimal signal-to-noise ratio. This is particularly important in single-particle imaging experiments where diffraction signals are typically very weak and the experiments are often accompanied by significant background scattering. A simple way to tremendously reduce background scattering by pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Synchrotron Radiation
سال: 2015
ISSN: 1600-5775
DOI: 10.1107/s1600577515017348